Full text

Turn on search term navigation

© 2018 Oviedo de la Fuente et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper proposes a novel approach that uses meteorological information to predict the incidence of influenza in Galicia (Spain). It extends the Generalized Least Squares (GLS) methods in the multivariate framework to functional regression models with dependent errors. These kinds of models are useful when the recent history of the incidence of influenza are readily unavailable (for instance, by delays on the communication with health informants) and the prediction must be constructed by correcting the temporal dependence of the residuals and using more accessible variables. A simulation study shows that the GLS estimators render better estimations of the parameters associated with the regression model than they do with the classical models. They obtain extremely good results from the predictive point of view and are competitive with the classical time series approach for the incidence of influenza. An iterative version of the GLS estimator (called iGLS) was also proposed that can help to model complicated dependence structures. For constructing the model, the distance correlation measure was employed to select relevant information to predict influenza rate mixing multivariate and functional variables. These kinds of models are extremely useful to health managers in allocating resources in advance to manage influenza epidemics.

Details

Title
Predicting seasonal influenza transmission using functional regression models with temporal dependence
Author
Manuel Oviedo de la Fuente; Febrero-Bande, Manuel; Muñoz, María Pilar; Domínguez, Àngela
First page
e0194250
Section
Research Article
Publication year
2018
Publication date
Apr 2018
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2030878916
Copyright
© 2018 Oviedo de la Fuente et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.