It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Vortices in optical beams have been the subject of extensive study since their status as a generic feature of light was established. They have found extensive use in optical trapping systems, astronomy, microscopy and are being investigated for free space communication systems. Related to optical vortices are correlation vortices in the coherence functions of partially coherent beams. Partially coherent beams have attracted interest as information carriers because of their resistance to scrambling on propagation. However, their analysis is more difficult than that of fully coherent beams due to the necessity of using correlation functions which increases the dimensionality of the integrals needed.
In this dissertation we demonstrate a complete description of a partially coherent vortex beam on propagation, and derive a new partially coherent beam class based on Laguerre-Gauss beams. We also give an analytic description of diffraction through any polygonal aperture, and demonstrate the triangular aperture case. We conclude with a study of fully coherent, partially coherent and incoherent beams propagated through turbulence.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer