Full text

Turn on search term navigation

© 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

C1q/TNF‐related protein 3 (CTRP3) is a secreted hormone that modulates hepatic glucose and lipid metabolism. Its circulating levels are reduced in human and rodent models of obesity, a metabolic state accompanied by chronic low‐grade inflammation. Recent studies have demonstrated an anti‐inflammatory role for recombinant CTRP3 in attenuating LPS‐induced systemic inflammation, and its deficiency markedly exacerbates inflammation in a mouse model of rheumatoid arthritis. We used genetic mouse models to explore the immunomodulatory function of CTRP3 in response to acute (LPS challenge) and chronic (high‐fat diet) inflammatory stimuli. In a sublethal dose of LPS challenge, neither CTRP3 deficiency nor its overexpression in transgenic mice had an impact on IL‐1β, IL‐6, TNFα, or MIP‐2 induction at the serum protein or mRNA levels, contrary to previous findings based on recombinant CTRP3 administration. In a metabolic context, we measured 71 serum cytokine levels in wild‐type and CTRP3 transgenic mice fed a high‐fat diet or a matched control low‐fat diet. On a low‐fat diet, CTRP3 transgenic mice had elevated circulating levels of multiple chemokines (CCL11, CXCL9, CXCL10, CCL17, CX3CL1, CCL22 and sCD30). However, when obesity was induced with a high‐fat diet, CTRP3 transgenic mice had lower circulating levels of IL‐5, TNFα, sVEGF2, and sVEGFR3, and a higher level of soluble gp130. Contingent upon the metabolic state, CTRP3 overexpression altered chemokine levels in lean mice, and attenuated systemic inflammation in the setting of obesity and insulin resistance. These results highlight a context‐dependent immunomodulatory role for CTRP3.

Details

Title
Immunomodulatory roles of CTRP 3 in endotoxemia and metabolic stress
Author
Petersen, Pia S 1 ; Wolf, Risa M 2 ; Xia Lei 1 ; Peterson, Jonathan M 1 ; Wong, G William 1 

 Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland 
 Department of Physiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Center for Metabolism and Obesity Research, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 
Section
Original Research
Publication year
2016
Publication date
Mar 2016
Publisher
John Wiley & Sons, Inc.
e-ISSN
2051817X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2035317980
Copyright
© 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.