It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
With the rapidly growing demand for mesenchymal stem cell (MSC) therapy, numerous strategies using MSCs for different diseases have been studied and reported. Because of their immunosuppressive properties, MSCs are commonly used as an allogeneic treatment. However, for the many donors who could potentially be used, it is important to understand the capacity for therapeutic usage with donor-to-donor heterogeneity. In this study, we aimed to investigate MSCs as a promising therapeutic strategy for critical limb ischemia. We evaluated MSCs from two donors (#55 and #64) and analyzed the capacity for angiogenesis through in vivo and in vitro assays to compare the therapeutic effect between different donors. We emphasized the importance of intra-population heterogeneity of MSCs on therapeutic usage by evaluating the effects of hypoxia on activating cellular angiogenesis in MSCs. The precondition of hypoxia in MSCs is known to enhance therapeutic efficacy. Our study suggests that sensitivity to hypoxic conditions is different between cells originating from different donors, and this difference affects the contribution to angiogenesis. The bioinformatics analysis of different donors under hypoxic culture conditions identified intrinsic variability in gene expression patterns and suggests alternative potential genetic factors ANGPTL4, ADM, SLC2A3, and CDON as guaranteed general indicators for further stem cell therapy.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; Research Institute for Veterinary Medicine, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
2 Adult Stem Cell Research Center, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea; Pusan National University School of Medicine, Busan, Republic of Korea; Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
3 Division of Vascular Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea