It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The integrity test applicable to TRU fuel containing MA with high radioactivity and high decay heat is important for safety. Neutron resonance transmission analysis is adapted for identification and quantification of nuclides in fuels by neutron time-of-flight measurement. In this work, a self-indication method was applied to the measurement of the transmitted neutron. The validation of the self-indication method was performed by using a pulsed neutron source and natural uranium samples at the KURRI-LINAC. The results show that the target areal density can be easily determined from the reduction of the counting rate around the resonances with and without sample. It was confirmed that the reduction ratio due to the neutron resonance absorption can be estimated to within 10%. The numerical estimation showed that the areal density of fuel material can be determined in the range from 10−6 to 10−2 (b−1) using multiple resonances and suitable thickness self-indicator.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer