It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The AMADEUS collaboration studied the K− absorptions at low momentum in light nuclei leading to Σ0p final state. Those events were recorded by the KLOE detector, used as an active target, installed in the the DAΦNE collider. The results show that it is possible to isolate the process where the K− is absorbed by two nucleons and the decay products are emitted without any further final state interactions among other contributions involving more than two nucleons. Further, the possible contribution of a ppK− bound state was investigated. The best fit gives space to a yield of ppK−/Kstop− = (0.044 ± 0.009 stat−0.005+0.004) × 10−2 corresponding to a binding energy and a width of 45 and 30 MeV/c2, respectively. A statistical analysis of this result shows although that its significance is only at the level of 1σ.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer