Full text

Turn on search term navigation

© 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Invasive mammalian carnivores contribute disproportionately to declines in global biodiversity. In California, nonnative red foxes (Vulpes vulpes) have significantly impacted endangered ground-nesting birds and native canids. These foxes derive primarily from captive-reared animals associated with the fur-farming industry. Over the past five decades, the cumulative area occupied by nonnative red fox increased to cover much of central and southern California. We used a landscape-genetic approach involving mitochondrial DNA (mtDNA) sequences and 13 microsatellites of 402 nonnative red foxes removed in predator control programs to investigate source populations, contemporary connectivity, and metapopulation dynamics. Both markers indicated high population structuring consistent with origins from multiple introductions and low subsequent gene flow. Landscape-genetic modeling indicated that population connectivity was especially low among coastal sampling sites surrounded by mountainous wildlands but somewhat higher through topographically flat, urban and agricultural landscapes. The genetic composition of populations tended to be stable for multiple generations, indicating a degree of demographic resilience to predator removal programs. However, in two sites where intensive predator control reduced fox abundance, we observed increases in immigration, suggesting potential for recolonization to counter eradication attempts. These findings, along with continued genetic monitoring, can help guide localized management of foxes by identifying points of introductions and routes of spread and evaluating the relative importance of reproduction and immigration in maintaining populations. More generally, the study illustrates the utility of a landscape-genetic approach for understanding invasion dynamics and metapopulation structure of one of the world's most destructive invasive mammals, the red fox.

Details

Title
Landscape genetics of the nonnative red fox of California
Author
Sacks, Benjamin N 1 ; Brazeal, Jennifer L 2 ; Lewis, Jeffrey C 3 

 Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, University of California, Davis, Davis, California; Department of Population Health and Reproduction, University of California, Davis, Davis, California 
 Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, University of California, Davis, Davis, California 
 Washington Department of Fish and Wildlife, Olympia, Washington 
Pages
4775-4791
Section
Original Research
Publication year
2016
Publication date
Jul 2016
Publisher
John Wiley & Sons, Inc.
e-ISSN
20457758
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2038623440
Copyright
© 2016. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.