It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Using the color dipole formalism we study production of Drell-Yan (DY) pairs in proton-nucleus interactions in the kinematic region corresponding to LHC experiments. Lepton pairs produced in a hard scattering are not accompanied with any final state interactions leading to either energy loss or absorption. Consequently, dileptons may serve as more efficient and cleaner probes for the onset of nuclear effects than nclusive hadron production. We perform a systematic analysis of these effects in production of Drell-Yan pairs in pPb interaction at the LHC. We present predictions for the nuclear suppression as a function of the dilepton transverse momentum, rapidity and invariant mass which can be verified by the LHC measurements. We found that a strong nuclear suppression can be interpreted as an effective energy loss proportional to the initial energy universally induced by multiple initial state interactions. In addition, we study a contribution of coherent effects associated with the gluon shadowing affecting the observables predominantly at small and medium-high transverse momenta.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer