It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Neutrophils in children with the polyarticular form of juvenile idiopathic arthritis (JIA) display abnormal transcriptional patterns linked to fundamental metabolic derangements. In this study, we sought to determine the effects of therapy on mRNA and miRNA expression networks in polyarticular JIA. Using exon and miRNA microarrays, we studied children with untreated active JIA (ADU, n = 35), children with active disease on therapy with methotrexate ± etanercept (ADT, n = 26), and children with inactive disease also on therapy (ID, n = 14). We compared the results to findings from healthy control children (HC, n = 35). We found substantial re-ordering of mRNA and miRNA expression networks after the initiation of therapy. Each disease state was associated with a distinct transcriptional profile, with the ADT state differing the most from HC, and ID more strongly resembling HC. Changes at the mRNA level were mirrored in changes in miRNA expression patterns. The analysis of the expression dynamics from differentially expressed genes across three disease states indicated that therapeutic response is a complex process. This process does not simply involve genes slowly correcting in a linear fashion over time. Computational modeling of miRNA and transcription factor (TF) co-regulatory networks demonstrated that combinational regulation of miRNA and TF might play an important role in dynamic transcriptome changes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Center for Computational Research, New York State Center of Excellence in Bioinformatics & Life Sciences, State University of New York at Buffalo, Buffalo, NY, USA; Department of Ophthalmology, Department of Biostatistics, Department of Medicine, State University of New York at Buffalo, Buffalo, NY, USA; SUNY Eye Institute, Buffalo, NY, USA
2 Department of Pediatrics, Division of Allergy/Immunology/Rheumatology, University at Buffalo, Buffalo, NY, USA
3 Arthritis & Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
4 Department of Pediatrics, Division of Allergy/Immunology/Rheumatology, University at Buffalo, Buffalo, NY, USA; Genetics, Genomics, & Bioinformatics Program, University at Buffalo, Buffalo, NY, USA