Abstract

Gross primary production (GPP) is a key driver of the peatland carbon cycle. Although many studies have explored the apparent GPP under natural light conditions, knowledge of the maximum GPP at light-saturation (GPPmax) and its spatio-temporal variation is limited. This information, however, is crucial since GPPmax essentially constrains the upper boundary for apparent GPP. Using chamber measurements combined with an external light source across experimental plots where vegetation composition was altered through long-term (20-year) nitrogen addition and artificial warming, we could quantify GPPmaxin-situ and disentangle its biotic and abiotic controls in a boreal peatland. We found large spatial and temporal variations in the magnitudes of GPPmax which were related to vegetation species composition and phenology rather than abiotic factors. Specifically, we identified vegetation phenology as the main driver of the seasonal GPPmax trajectory. Abiotic anomalies (i.e. in air temperature and water table level), however, caused species-specific divergence between the trajectories of GPPmax and plant development. Our study demonstrates that photosynthetically active biomass constrains the potential peatland photosynthesis while abiotic factors act as secondary modifiers. This further calls for a better representation of species-specific vegetation phenology in process-based peatland models to improve predictions of global change impacts on the peatland carbon cycle.

Details

Title
Peatland vegetation composition and phenology drive the seasonal trajectory of maximum gross primary production
Author
Peichl, Matthias 1   VIAFID ORCID Logo  ; Gažovič, Michal 1 ; Vermeij, Ilse 2 ; de Goede, Eefje 3 ; Sonnentag, Oliver 4 ; Limpens, Juul 2 ; Nilsson, Mats B 1 

 Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden 
 Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, The Netherlands 
 Department of Aquatic Ecology, Radboud University Nijmegen, Nijmegen, The Netherlands; Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands 
 Département de géographie, Université de Montréal, Montréal, Canada 
Pages
1-11
Publication year
2018
Publication date
May 2018
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2042728289
Copyright
© 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.