It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Successful inter-host transmission of most apicomplexan parasites requires the formation of infective sporozoites within the oocysts. Unlike all other infective stages that are strictly intracellular and depend on host resources, the sporozoite stage develops outside the host cells, but little is known about its self-governing metabolism. This study deployed Eimeria falciformis, a parasite infecting the mouse as its natural host, to investigate the process of phospholipid biogenesis in sporozoites. Lipidomic analyses demonstrated the occurrence of prototypical phospholipids along with abundant expression of at least two exclusive lipids, phosphatidylthreonine (PtdThr) and inositol phosphorylceramide with a phytosphingosine backbone, in sporozoites. To produce them de novo, the parasite harbors nearly the entire biogenesis network, which is an evolutionary mosaic of eukaryotic-type and prokaryotic-type enzymes. Notably, many have no phylogenetic counterpart or functional equivalent in the mammalian host. Using Toxoplasma gondii as a gene-tractable surrogate to examine Eimeria enzymes, we show a highly compartmentalized network of lipid synthesis spread primarily in the apicoplast, endoplasmic reticulum, mitochondrion, and Golgi complex. Likewise, trans-genera complementation of a Toxoplasma mutant with the PtdThr synthase from Eimeria reveals a convergent role of PtdThr in fostering the lytic cycle of coccidian parasites. Taken together, our work establishes a model of autonomous membrane biogenesis involving significant inter-organelle cooperation and lipid trafficking in sporozoites. Phylogenetic divergence of certain pathways offers attractive drug targets to block the sporulation and subsequent transmission. Not least, our results vindicate the possession of an entire de novo lipid synthesis network in a representative protist adapted to an obligate intracellular parasitic lifestyle.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany
2 Department of Molecular Parasitology, Faculty of Life Sciences, Humboldt University, Berlin, Germany; Department of Life Sciences and Engineering, University of Applied Sciences, Bingen, Germany
3 Department of Biochemistry and Cell Biology, Institute of Biomembranes, Utrecht University, Utrecht, The Netherlands