Abstract

Cardiac fibrosis is implicit in all forms of heart disease but there are no effective treatments. In this report, we investigate the role of the multi-functional enzyme Transglutaminase 2 (TG2) in cardiac fibrosis and assess its potential as a therapeutic target. Here we describe the use a highly selective TG2 small-molecule inhibitor to test the efficacy of TG2 inhibition as an anti-fibrotic therapy for heart failure employing two different in vivo models of cardiac fibrosis: Progressively induced interstitial cardiac fibrosis by pressure overload using angiotensin II infusion: Acutely induced focal cardiac fibrosis through myocardial infarction by ligation of the left anterior descending coronary artery (AMI model). In the AMI model, in vivo MRI showed that the TG2 inhibitor 1–155 significantly reduced infarct size by over 50% and reduced post-infarct remodelling at 20 days post insult. In both models, Sirius red staining for collagen deposition and levels of the TG2-mediated protein crosslink ε(γ-glutamyl)lysine were significantly reduced. No cardiac rupture or obvious signs of toxicity were observed. To provide a molecular mechanism for TG2 involvement in cardiac fibrosis, we show that both TGFβ1-induced transition of cardiofibroblasts into myofibroblast-like cells and TGFβ1-induced EndMT, together with matrix deposition, can be attenuated by the TG2 selective inhibitor 1–155, suggesting a new role for TG2 in regulating TGFβ1 signalling in addition to its role in latent TGFβ1 activation. In conclusion, TG2 has a role in cardiac fibrosis through activation of myofibroblasts and matrix deposition. TG2 inhibition using a selective small-molecule inhibitor can attenuate cardiac fibrosis.

Details

Title
Cardiac fibrosis can be attenuated by blocking the activity of transglutaminase 2 using a selective small-molecule inhibitor
Author
Wang, Zhuo 1 ; Stuckey, Daniel J 2 ; Murdoch, Colin E 3 ; Camelliti, Patrizia 4 ; Lip, Gregory Y H 5 ; Griffin, Martin 1 

 School of Life and Health Sciences, Aston University, Birmingham, UK 
 Centre for Advanced Biomedical Imaging, University College, London, UK 
 Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham, UK 
 School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK 
 Institute of Cardiovascular Sciences, City Hospital, Birmingham, UK 
Pages
1-12
Publication year
2018
Publication date
Apr 2018
Publisher
Springer Nature B.V.
e-ISSN
20414889
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2043152636
Copyright
© 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.