Full Text

Turn on search term navigation

Copyright © 2018, De Martino et al.; licensee Beilstein-Institut. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Sustainable and environmentally benign production are key drivers for developments in the chemical industrial sector, as protecting our planet has become a significant element that should be considered for every industrial breakthrough or technological advancement. As a result, the concept of green chemistry has been recently defined to guide chemists towards minimizing any harmful outcome of chemical processes in either industry or research. Towards greener reactions, scientists have developed various approaches in order to decrease environmental risks while attaining chemical sustainability and elegancy. Utilizing catalytic nanoreactors for greener reactions, for facilitating multistep synthetic pathways in one-pot procedures, is imperative with far-reaching implications in the field. This review is focused on the applications of some of the most used nanoreactors in catalysis, namely: (polymer) vesicles, micelles, dendrimers and nanogels. The ability and efficiency of catalytic nanoreactors to carry out organic reactions in water, to perform cascade reaction and their ability to be recycled will be discussed.

Details

Title
Nanoreactors for green catalysis
Author
De Martino M Teresa; Abdelmohsen Loai K E A; Rutjes Floris P J T; van Hest Jan C M
University/institution
U.S. National Institutes of Health/National Library of Medicine
Publication year
2018
Publication date
2018
Publisher
Beilstein-Institut zur Föerderung der Chemischen Wissenschaften
ISSN
2195951X
e-ISSN
18605397
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2047930020
Copyright
Copyright © 2018, De Martino et al.; licensee Beilstein-Institut. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.