Abstract

We present state-of-the-art results from a lattice QCD calculation of the nucleon axial coupling, gA, using Möbius Domain-Wall fermions solved on the dynamical Nf = 2 + 1 + 1 HISQ ensembles after they are smeared using the gradient-flow algorithm. Relevant three-point correlation functions are calculated using a method inspired by the Feynman-Hellmann theorem, and demonstrate significant improvement in signal for fixed stochastic samples. The calculation is performed at five pion masses of mπ ~ {400, 350, 310, 220, 130} MeV, three lattice spacings of a ~ {0.15, 0.12, 0.09} fm, and we do a dedicated volume study with mπL ~ {3.22, 4.29, 5.36}. Control over all relevant sources of systematic uncertainty are demonstrated and quantified. We achieve a preliminary value of gA = 1.285(17), with a relative uncertainty of 1.33%.

Details

Title
Nucleon axial coupling from Lattice QCD
Author
Chia Cheng Chang; Nicholson, Amy; Rinaldi, Enrico; Berkowitz, Evan; Garron, Nicolas; Brantley, David; Monge-Camacho, Henry; Monahan, Chris; Bouchard, Chris; Clark, MA; Joó, Bálint; Kurth, Thorsten; Orginos, Kostas; Vranas, Pavlos; Walker-Loud, André
Section
1 Plenaries (in order of appearance)
Publication year
2018
Publication date
2018
Publisher
EDP Sciences
ISSN
21016275
e-ISSN
2100014X
Source type
Conference Paper
Language of publication
English
ProQuest document ID
2050825664
Copyright
© 2018. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.