It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Nanoarchitectonics is a new paradigm to combine and unify nanotechnology with other sciences and technologies, such as supramolecular chemistry, self-assembly, self-organization, materials technology for manipulation of the size of material objects, and even biotechnology for hybridization with bio-components. The nanoarchitectonic concept leads to the synergistic combination of various methodologies in materials production, including atomic/molecular-level control, self-organization, and field-controlled organization. The focus of this review is on soft 2D nanoarchitectonics. Scientific views on soft 2D nanomaterials are not fully established compared with those on rigid 2D materials. Here, we collect recent examples of 2D nanoarchitectonic constructions of functional materials and systems with soft components. These examples are selected according to the following three categories on the basis of 2D spatial density and motional freedom: (i) well-packed and oriented organic 2D materials with rational design of component molecules and device applications, (ii) well-defined assemblies with 2D porous structures as 2D network materials, and (iii) 2D control of molecular machines and receptors on the basis of certain motional freedom confined in two dimensions.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan; Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
2 Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan; JST, PRESTO, Kawaguchi, Saitama, Japan
3 World Premier International (WPI) Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), Tsukuba, Japan