It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In the high energy limit of scattering amplitudes in Quantum Chromodynamics and supersymmetric theories the dominant Feynman diagrams are characterized by a hidden integrability in the planar limit. A well-known example is that of Odderon exchange, which can be described as a composite state of three reggeized gluons and corresponds to a closed spin chain with periodic boundary conditions. In the supersymmetric Yang–Mills theory a similar spin chain arises in the multi-Regge asymptotics of the eight-point amplitude in the planar limit. We investigate the associated open spin chain in transverse momentum and rapidity variables solving the corresponding effective Feynman diagrams. We introduce the concept of complexity in the high energy effective field theory and study its emerging scaling laws.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer