It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Drug-disease associations provide important information for the drug discovery. Wet experiments that identify drug-disease associations are time-consuming and expensive. However, many drug-disease associations are still unobserved or unknown. The development of computational methods for predicting unobserved drug-disease associations is an important and urgent task.
Results
In this paper, we proposed a similarity constrained matrix factorization method for the drug-disease association prediction (SCMFDD), which makes use of known drug-disease associations, drug features and disease semantic information. SCMFDD projects the drug-disease association relationship into two low-rank spaces, which uncover latent features for drugs and diseases, and then introduces drug feature-based similarities and disease semantic similarity as constraints for drugs and diseases in low-rank spaces. Different from the classic matrix factorization technique, SCMFDD takes the biological context of the problem into account. In computational experiments, the proposed method can produce high-accuracy performances on benchmark datasets, and outperform existing state-of-the-art prediction methods when evaluated by five-fold cross validation and independent testing.
Conclusion
We developed a user-friendly web server by using known associations collected from the CTD database, available at http://www.bioinfotech.cn/SCMFDD/. The case studies show that the server can find out novel associations, which are not included in the CTD database.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer