It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
In diffusion-weighted magnetic resonance imaging (DWI) using single-shot echo planar imaging (ss-EPI), both reduced field-of-view (FOV) excitation and sensitivity encoding (SENSE) alone can increase in-plane resolution to some degree. However, when the two techniques are combined to further increase resolution without pronounced geometric distortion, the resulted images are often corrupted by high level of noise and artifact due to the numerical restriction in SENSE. Hence, this study is aimed to provide a reconstruction method to deal with this problem.
Methods
The proposed reconstruction method was developed and implemented to deal with the high level of noise and artifact in the combination of reduced FOV imaging and traditional SENSE, in which all the imaging data were considered jointly by incorporating the motion induced phase variations among excitations. The in vivo human spine diffusion images from ten subjects were acquired at 1.5 T and reconstructed using the proposed method, and compared with SENSE magnitude average results for a range of reduction factors in reduced FOV. These images were evaluated by two radiologists using visual scores (considering distortion, noise and artifact levels) from 1 to 10.
Results
The proposed method was able to reconstruct images with greatly reduced noise and artifact compared to SENSE magnitude average. The mean g-factors were maintained close to 1 along with enhanced signal-to-noise ratio efficiency. The image quality scores of the proposed method were significantly higher (P < 0.01) than SENSE magnitude average for all the evaluated reduction factors.
Conclusion
The proposed method can improve the combination of SENSE and reduced FOV for high-resolution ss-EPI DWI with reduced noise and artifact.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer