It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Nowadays, medical rehabilitation system has become a requirement due to increment in national rehabilitation centres and medical hospitals. An assistive rehabilitation orthosis becomes essential and was used for rehabilitation therapy, condition monitoring, and physical strengthening. This study focused on the lower limb assistive rehabilitation orthosis development using pneumatic artificial muscle. To successfully control this orthosis system which consists of antagonistic mono- and biarticular muscle actuators, it is necessary to construct a reliable control algorithm. The suitable control scheme and strategy to manoeuvre this orthosis system similar to human musculoskeletal system have yet to be fully developed and established. Based on the review study, it is said that the co-contraction controls of anterior-posterior pneumatic muscles was able to improve the joint stiffness and stability of the orthosis as well as good manoeuvrability. Therefore, a characterization model of an antagonistic mono- and bi-articular muscles activities of human's lowerlimb during walking motion will be necessary. A healthy young male subject was used as test subject to obtain the sEMG muscle activities for antagonistic mono- and bi-articular muscles (i.e., Vastus Medialis-VM, Vastus Lateralis-VL, Rectus Femoris-RF, and Bicep Femoris-BF). The tests were carried out at different speeds of 2km/h, 3km/h, and 4km/h for one minute walking motion on a treadmill. Then, the patterns of the sEMG muscle activities were modelled and characterised using fifth order polynomial equation. Based on the results, it is shown that the anterior and posterior muscles were exhibited a muscle synergy in-between multiple anterior or posterior muscles and muscle co-contraction between anteriorposterior muscles in order to control the movements at the joints during walking motion. As conclusion, it is proven that the sEMG muscle activities of the antagonistic mono- and bi-articular muscles were follow a certain contraction-expansion patterns during walking motion even when it were tested at different gait cycle speeds.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer