It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
During fluid flow from larger to smaller diameter pipes, a drop in pressure is experienced. High pressure drop across bit indicated high energy loss in the hydraulic system and also a setback to ROP performance. This is inefficient and pressure pumps would have to be of bigger sizing to make up for the losses. Present form of pressure drop models is in terms of mud density, flow rate, and total flow area. The objective of this paper is focused on the analysis of CFD simulation and to propose optimized parameters for improved ROP. Single phase flow study of Yield Power Law mud rheology was simulated at bottom hole of horizontal section. Parametric study on mud rheology was carried using DOE. Design points of DOE were sampled mostly using Latin Hypercube Sampling and a few by Central Composite Design. It is found that Kriging Response Surface method generated the best regression model where the predicted values are closest to the observed values and has the lowest Maximum Relative Residual (0.000336%). Inlet velocity and Power Index have significant effect on pressure drop. Consistency Index showed moderate effect while Yield Stress showed small effect to pressure drop. This research has proven that pressure loss model should take into account of mud rheology. Further research can be done with PDC bit rotation and its effect on mud behaviour.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer