Abstract

The reduction of noise and vibration are very important in the design of hydrofoils. The current study focuses on establishing a theoretical and numerical model to investigate fluid-structure interaction caused by elastic hydrofoils in a pulsating flow. A fully coupled three dimensional boundary element method (BEM) and finite element method (FEM) code is applied to analyze the hydrodynamic performance. The numerical results show that the peak frequencies of the support reactions are related to the natural frequency of the hydrofoil. The natural frequencies and support reaction amplitudes are reduced significantly by including the fluid-structure coupling.

Details

Title
Fluid-Structure Interaction Analysis of Hydrofoils in a Pulsating Flow
Author
Li, Jiasheng; Croaker, Paul; Tian, Jin; Karimi, Mahmoud; Hua, Hongxing
Section
Machinery manufacturing and automation
Publication year
2016
Publication date
2016
Publisher
EDP Sciences
ISSN
22747214
e-ISSN
2261236X
Source type
Conference Paper
Language of publication
English
ProQuest document ID
2057327853
Copyright
© 2016. This work is licensed under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.