It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In March 2016 accelerator-based experiments colliding protons (0.4 and 0.8 GeV), helium (0.4 AGeV) and iron (0.4 and 0.8 AGeV) on thick aluminum targets with surface densities of 20, 40, and 60 g/cm2 were performed at the National Aeronautics and Space Administration Space Radiation Laboratory (NSRL) at Brookhaven National Laboratory. Two targets were utilized in each experimental configuration. Hydrogen and helium ions were detected using organic liquid scintillators in conjunction with thin plastic scintillators at 10°, 30°, 45°, 60°, 80°, and 135° from beam axis. Time-of-flight techniques and pulse shape discrimination were used to identify light ion species in order to generate double differential energy spectra of the light ion fragments. Comparisons of these measured yields were compared with Monte Carlo calculations generated by MCNP6. These yields will be used to quantify uncertainty in radiation transport codes utilized in risk assessment for spaceflight missions with prolonged exposures to galactic cosmic rays.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer