It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In view of the limitation of fault diagnosis methods in substation intelligent patrol system, a fault diagnosis method based on multi-sensors information fusion is proposed. In the field of fault diagnosis, this method can deal with uncertain and imprecise information by using fuzzy theory, and has a high self-study capability based on neural network. Collecting samples of data through establishing many sensors in the scene of the intelligent patrol system, and then through the BP algorithm of fuzzy neural network training to achieve accurate fault diagnosis function of the intelligent patrol system. By comparing the result of an example, it shows that, compared with using single information, using multi-sensors information as the diagnosis method is more accurate and reliable in the intelligent patrol system.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer