It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Stochastic switching is considered as a cost-saving strategy for adaptation to environmental challenges. We show here that stochastic switching of a monostable circuit can mediate the adaptation of the engineered OSU12-hisC Escherichia coli strain to histidine starvation. In this strain, the hisC gene was deleted from the His operon and placed under the control of a monostable foreign promoter. In response to histidine depletion, the OSU12-hisC population shifted to a higher HisC expression level, which is beneficial under starving conditions but is not favoured by the monostable circuit. The population shift was accompanied by growth recovery and was reversible upon histidine addition. A weak directionality in stochastic switching of hisC was observed in growing microcolonies under histidine-free conditions. Directionality and fate decision were in part dependent on the initial cellular status. Finally, microarray analysis indicated that OSU12-hisC reorganized its transcriptome to reach the appropriate physiological state upon starvation. These findings suggest that bacteria do not necessarily need to evolve signalling mechanisms to control gene expression appropriately, even for essential genes.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
2 Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan
3 Faculty of Agriculture and Life Science, Hirosaki University, Aomori, Japan
4 Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, Osaka, Japan; Graduate School of Frontier Biosciences, Osaka University, Osaka, Japan; Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency (JST), Osaka, Japan