Full text

Turn on search term navigation

© 2018 Assali et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A number of studies have demonstrated that the Sirtuin family member, Sirt1, is a key integrator of growth, metabolism, and lifespan. Sirt1 directly interacts with and deacetylates key regulators of the circadian clock, positioning it to be an important link between feeding and circadian rhythms. In fact, one study suggests that Sirt1 is necessary for behavioral anticipation of limited daily food availability, a circadian process termed food anticipatory activity (FAA). In their study, mice overexpressing Sirt1 had enhanced FAA, while mice lacking Sirt1 had little to no FAA. Based on the supposition that Sirt1 was indeed required for FAA, we sought to use Sirt1 deletion to map the neural circuitry responsible for FAA. We began by inactivating Sirt1 using the cell-type specific Cre-driver lines proopiomelanocortin, but after observing no effect on body weight loss or FAA we then moved on to more broadly neuronal Cre drivers Ca2+/calmodulin-dependent protein kinase II and nestin. As neither of these neuronal deletions of Sirt1 had impaired FAA, we then tested 1) a broad postnatal tamoxifen-inducible deletion, 2) a complete, developmental knockout of Sirt1, and 3) a gene replacement, catalytically inactive, form of Sirt1; but all of these mice had FAA similar to controls. Therefore, our findings suggest that FAA is completely independent of Sirt1.

Details

Title
Food anticipatory activity on a calorie-restricted diet is independent of Sirt1
Author
Assali, Dina R; Hsu, Cynthia T; Gunapala, Keith M; Aguayo, Antonio; McBurney, Michael; Andrew D Steele ⨯
First page
e0199586
Section
Research Article
Publication year
2018
Publication date
Jun 2018
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2059003270
Copyright
© 2018 Assali et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.