It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The article presents vibration simulation studies of a crankshaft used in internal combustion engine. The simulation was performed using FEM method. The study was conducted in Abaqus software, and a shaft model was implemented in Catia v5. The influence of a mesh element size on the results of obtained calculations was analysed. A shaft which will be used in the ultralight aircraft engine was the subject of research. Results show the first 10 frequency modes and 12 grid examples for various element sizes, from 9 to 1.3 mm. Moreover, the effect of mesh size on the obtained results is presented. It has been proven that the maximum error for two extreme results (the densest and sparsest grid) is approximately 1.4%; therefore, it is justified to carry out calculations of own vibration on a fatal grid. Results presented herein will be used in the future work on the crankshaft geometry modifications.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer