Full text

Turn on search term navigation

© 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Arid regions are a major source of mineral dust aerosol. Transport from these sources can have a great impact on aerosol climatology in distant regions. In order to assess the impact of dust on climate we must understand how dust properties change after long distance transport from sources. This study addresses the changes in columnar aerosol properties when mineral dust outbreaks from western Africa arrive over the eastern Caribbean after transport across the Atlantic Ocean, a transit of 5–7 days. We use data from the NASA Aerosol Robotic Network (AERONET) located at five Caribbean and two western Africa sites to characterize changes in columnar aerosol properties: aerosol optical depth (AOD), size distribution, single scattering albedo, and refractive indexes. We first characterized the local aerosol climatology at each site and then using air mass back trajectories we identified those days when trajectories over Caribbean sites back-tracked to western Africa. Over the period 1996–2014 we identify 3174 days, an average of 167 days per year, when the air mass over the Caribbean sites could be linked to at least one of the two western Africa sites. For 1162 of these days, AOD data are available for the Caribbean sites as well as for the corresponding western Africa sites about 5–7 days earlier, when the air mass passed over these sites. We identified dust outbreaks as those air masses yielding AOD 0.2 and an Ångström exponent below 0.6. On this basis of the total 1162 days, 484 meet the criteria for mineral dust outbreaks. We observe that the AOD at 440 nm decreases by about 0.16 or 30 % during transport. The volume particle size distribution shows a similar decrease in the volume concentration, mainly in the coarse mode. The single scattering albedo, refractive indexes, and asymmetry factor remain unchanged. The difference in the effective radius over western Africa sites with respect to Caribbean sites ranges between 0 and -0.3 µm. Finally we conclude that in about half of the cases only non-spherical dust particles are present in the atmosphere over the western Africa and Caribbean sites, while in the other cases dust particles were mixed with other types of aerosol particles.

Details

Title
Impact of long-range transport over the Atlantic Ocean on Saharan dust optical and microphysical properties based on AERONET data
Author
Velasco-Merino, Cristian 1 ; Mateos, David 1   VIAFID ORCID Logo  ; Toledano, Carlos 1   VIAFID ORCID Logo  ; Prospero, Joseph M 2 ; Molinie, Jack 3   VIAFID ORCID Logo  ; Lovely Euphrasie-Clotilde 3   VIAFID ORCID Logo  ; González, Ramiro 1   VIAFID ORCID Logo  ; Cachorro, Victoria E 1 ; Abel Calle 1 ; de Frutos, Angel M 1 

 Grupo de Óptica Atmosférica, Dpto. de Física Teórica Atómica y Óptica, Universidad de Valladolid, Valladolid, Spain 
 Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, USA 
 Laboratory of Geosciences and Energy, Université des Antilles, Pointe-à-Pitre, Guadeloupe, France 
Pages
9411-9424
Publication year
2018
Publication date
2018
Publisher
Copernicus GmbH
ISSN
16807316
e-ISSN
16807324
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2064258476
Copyright
© 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.