It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
It is critical that the regulatory system functions well in space’s microgravity. However, the “intrinsic” cardiovascular regulatory system (β), estimated by the fractal scaling of heart rate variability (HRV) (0.0001–0.01 Hz), does not adapt to the space environment during long-duration (6-month) space flights. Neuroimaging studies suggest that the default mode network (DMN) serves a broad adaptive purpose, its topology changing over time in association with different brain states of adaptive behavior. Hypothesizing that HRV varies in concert with changes in brain’s functional connectivity, we analyzed 24-hour HRV records from 8 healthy astronauts (51.8 ± 3.7 years; 6 men) on long (174.5 ± 13.8 days) space missions, obtained before launch, after about 21 (ISS01), 73 (ISS02), and 156 (ISS03) days in space, and after return to Earth. Spectral power in 8 frequency regions reflecting activity in different brain regions was computed by maximal entropy. Improved β (p < 0.05) found in 4 astronauts with a positive activation in the “HRV slow-frequency oscillation” (0.10–0.20 Hz) occurred even in the absence of consciousness. The adaptive response was stronger in the evening and early sleep compared to morning (p = 0.039). Brain functional networks, the DMN in particular, can help adapt to microgravity in space with help from the circadian clock.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Executive Medical Center, Totsuka Royal Clinic, Tokyo Women’s Medical University, Tokyo, Japan; Halberg Chronobiology Center, University of Minnesota, Minneapolis, Minnesota, USA
2 Halberg Chronobiology Center, University of Minnesota, Minneapolis, Minnesota, USA
3 Department of Medicine, Tokyo Women’s Medical University, Medical Center East, Tokyo, Japan
4 Faculty of Education, Tohoku Fukushi University, Miyagi, Japan; Space Biomedical Research Group, Japan Aerospace Exploration Agency, Tokyo, Japan
5 Space Biomedical Research Group, Japan Aerospace Exploration Agency, Tokyo, Japan