It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Eusociality has independently evolved multiple times in the hymenoptera, but the patterns of adaptive molecular evolution underlying the evolution and elaboration of eusociality remain uncertain. Here, we performed a population genomics study of primitively eusocial Polistes (paper wasps), and compared their patterns of molecular evolution to two social bees; Bombus (bumblebees), and Apis (honey bees). This species triad allowed us to study molecular evolution across a gradient of social complexity (Polistes < Bombus < Apis) and compare species pairs that have similar (i.e. Polistes and Bombus) or different (i.e. Polistes and Apis) life histories, while controlling for phylogenetic distance. We found that regulatory genes have high levels of positive selection in Polistes; consistent with the prediction that adaptive changes in gene regulation are important during early stages of social evolution. Polistes and Bombus exhibit greater similarity in patterns of adaptive evolution including greater overlap of genes experiencing positive selection, and greater positive selection on queen-biased genes. Our findings suggest that either adaptive evolution of a few key genes underlie the evolution of simpler forms of eusociality, or that the initial stages of social evolution lead to selection on a few key traits orchestrated by orthologous genes and networks.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Department of Biology, York University, Toronto, Ontario, Canada
2 Department of Biology, York University, Toronto, Ontario, Canada; Donnelly Centre, University of Toronto, Toronto, Canada
3 Departamento de Biologia, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
4 Dipartimento di Biologia, Università di Firenze, Florence, Italy
5 Department of Ecology, Evolution & Organismal Biology and Entomology, Iowa State University, Ames, USA