Abstract

Error correction is a significant step in postprocessing of continuous-variable quantum key distribution system, which is used to make two distant legitimate parties share identical corrected keys. We propose an experiment demonstration of high speed error correction with multi-edge type low-density parity check (MET-LDPC) codes based on graphic processing unit (GPU). GPU supports to calculate the messages of MET-LDPC codes simultaneously and decode multiple codewords in parallel. We optimize the memory structure of parity check matrix and the belief propagation decoding algorithm to reduce computational complexity. Our results show that GPU-based decoding algorithm greatly improves the error correction speed. For the three typical code rate, i.e., 0.1, 0.05 and 0.02, when the block length is 106 and the iteration number are 100, 150 and 200, the average error correction speed can be respectively achieved to 30.39 Mbits/s (over three times faster than previous demonstrations), 21.23 Mbits/s and 16.41 Mbits/s with 64 codewords decoding in parallel, which supports high-speed real-time continuous-variable quantum key distribution system.

Details

Title
High speed error correction for continuous-variable quantum key distribution with multi-edge type LDPC code
Author
Wang, Xiangyu 1 ; Zhang, Yichen 1 ; Song, Yu 1 ; Guo, Hong 2 

 State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, China 
 State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics Engineering and Computer Science, Center for Quantum Information Technology, Center for Computational Science and Engineering, Peking University, Beijing, China 
Pages
1-7
Publication year
2018
Publication date
Jul 2018
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2068901648
Copyright
© 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.