It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
It has been thought that incretin signaling prevents arteriosclerosis, and very recently anti-arteriosclerotic effects through GLP-1 receptor were finally demonstrated in clinical human study. The purpose of this study was to investigate how vascular GLP-1 receptor expression is influenced in human subjects. First, we evaluated GLP-1 receptor expression in human arteries in immunostaining. Next, we separated the artery into the intima and media, and evaluated gene expression levels of various factors. We divided the subjects into obesity and non-obesity group and compared their expression levels between them. Finally, we evaluated which factors determine vascular GLP-1 receptor expression. GLP-1 receptor expression in intima and media was lower in obesity group compared to non-obesity group which was correlated with the alteration of TCF7L2 expression. Multiple regression analyses showed that BMI was an independent determining factor for GLP-1 receptor expression in the intima and media. Furthermore, using small interfering RNA method and TCF7L2-EGFP adenovirus, we showed that TCF7L2 was involved in GLP-1 receptor expression in human vascular cells. Taken together, vascular GLP-1 receptor and TCF7L2 expression was significantly down-regulated in human subjects with obesity. In addition, it is likely that TCF7L2 functions as a modulator of vascular GLP-1 receptor expression.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, Kurashiki, Japan
2 Department of Diabetes, Sakakibara Heart Institute, Okayama, Japan
3 Section of Cell Biology and Functional Genomics, Department of Medicine, Imperial College London, London, UK
4 Department of Cardiovascular Surgery, Sakakibara Heart Institute, Okayama, Japan
5 Division of Diabetes, Endocrinology and Metabolism, Kawasaki Medical School, Kurashiki, Japan; Department of General Internal Medicine 1, Kawasaki Hospital, Kawasaki Medical School, Okayama, Japan