It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Perisynaptic glial cells respond to neural activity by increasing cytosolic levels of calcium, but the functional significance of this pathway is unclear. Terminal/persiynaptic Schwann cells (TPSCs) are a perisynaptic glial cell at the neuromuscular junction. Here, we provide genetic evidence that neural activity-induced intracellular calcium accumulation in neonatal TPSCs is mediated exclusively by P2Y1 receptors. In P2ry1 mutant mice lacking these responses, postsynaptic, rather than presynaptic, function was altered in response to nerve stimulation. This impairment was correlated with a greater susceptibility to activity-induced muscle fatigue. Interestingly, fatigue in P2ry1 mutants was exacerbated by exposure to high potassium to a greater degree than in control mice. High potassium itself increased cytosolic levels of calcium in TPSCs, a response which was also reduced P2ry1 mutants. These results suggest that activity-induced calcium responses in perisynaptic glia at the NMJ regulate postsynaptic function and muscle fatigue by influencing the levels of perisynaptic potassium.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer