Abstract

Intercellular communication coordinates hypophysis establishment in the Arabidopsis embryo. Previously, TARGET OF MONOPTEROS 7 (TMO7) was reported to be transported to the hypophysis, the founder cell of the root cap, and RNA suppression experiment implicated its function in embryonic root development. However, it remained unclear what protein properties and mechanisms mediate TMO7 protein transport, and what role the movement plays in development. Here, we report that in the post-embryonic root, TMO7 and its close relatives are transported into the root cap through plasmodesmata in a sequence, but not size dependent manner. We also show that nuclear residence is critical for TMO7 transport, and postulate that modification, potentially phosphorylation, labels TMO7 for transport. Additionally, three novel CRISPR/Cas9-induced tmo7 alleles confirmed a role in hypophysis division, but suggest complex redundancies with close relatives in root formation. Finally, we demonstrate that TMO7 transport is biologically meaningful, as local expression partially restores hypophysis division in a plasmodesmatal protein transport mutant. Our study identifies motifs and amino acids critical for TMO7 protein transport and establishes the importance of TMO7 in hypophysis and root development.

Details

Title
Regulation of intercellular TARGET OF MONOPTEROS 7 protein transport in the Arabidopsis root
Author
Kuan-Ju, Lu; De Rybel, Bert; Hilda Van Mourik; Weijers, Dolf
University/institution
Cold Spring Harbor Laboratory Press
Section
New Results
Publication year
2017
Publication date
Mar 31, 2017
Publisher
Cold Spring Harbor Laboratory Press
ISSN
2692-8205
Source type
Working Paper
Language of publication
English
ProQuest document ID
2070082327
Copyright
�� 2017. This article is published under http://creativecommons.org/licenses/by-nd/4.0/ (���the License���). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.