It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
FOXA1 is a pioneer factor that is important in hormone dependent cancer cells to stabilise nuclear receptors, such as estrogen receptor (ER) to chromatin. FOXA1 binds to enhancers regions that are enriched in H3K4mono- and dimethylation (H3K4me1, H3K4me2) histone marks and evidence suggests that these marks are requisite events for FOXA1 to associate with enhancers to initate subsequent gene expression events. However, exogenous expression of FOXA1 has been shown to induce H3K4me1 and H3K4me2 signal at enhancer elements and the order of events and the functional importance of these events is not clear. We performed a FOXA1 Rapid Immunoprecipitation Mass Spectrometry of Endogenous Proteins (RIME) screen in ER��-positive MCF-7 breast cancer cells in order to identify FOXA1 interacting partners and we found histone-lysine N-methyltransferase (MLL3) as the top FOXA1 interacting protein. MLL3 is typically thought to induce H3K4me3 at promoter regions, but recent findings suggest it may contribute to H3K4me1 deposition, in line with our observation that MLL3 associates with an enhancer specific protein. We performed MLL3 ChIP-seq in breast cancer cells and unexpectedly found that MLL3 binds mostly at non-promoter regions enhancers, in contrast to the prevailing hypothesis. MLL3 was shown to occupy regions marked by FOXA1 occupancy and as expected, H3K4me1 and H3K4me2. MLL3 binding was dependent on FOXA1, indicating that FOXA1 recruits MLL3 to chromatin. Motif analysis and subsequent genomic mapping revealed a role for Grainy head like protein-2 (GRHL2) which was shown to co-occupy regions of the chromatin with MLL3. Regions occupied by all three factors, namely FOXA1, MLL3 and GRHL2, were most enriched in H3K4me1. MLL3 silencing decreased H3K4me1 at enhancer elements, but had no appreciable impact on H3K4me3 at enhancer elements. We identify a complex relationship between FOXA1, MLL3 and H3K4me1 at enhancers in breast cancer and propose a mechanism whereby the pioneer factor FOXA1 can interact with a chromatin modifier MLL3, recruiting it to chromatin to facilitate the deposition of H3K4me1 histone marks, subsequently demarcating active enhancer elements.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer