It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Platelets undergo profound shape changes upon adhesion to damaged blood vessel walls that are mediated by reorganisation of the actin cytoskeleton in response to receptor-mediated signalling cascades. The highly conserved 56 kDa multidomain cyclase associated protein 1 (CAP1) works in concert with cofilin and profilin to modulate actin filament turnover by facilitating cofilin-mediated actin filament severing and depolymerisation and catalysing profilin-mediated regeneration of actin monomers for reutilisation in growing filaments. CAP1 is abundant in platelets but its roles remain unexplored. We report that in suspended platelets CAP1 localises predominantly at the cell cortex whereas in spread platelets it is uniformly distributed in the cytoplasm, with enrichment at the cell cortex and the periphery of actin nodules. Upon subcellular fractionation most CAP1 was found cytosolic but part associated to the membrane fraction in an actin-independent manner. Interestingly, upon stimulation with thrombin a significant proportion of the membrane-associated CAP1 translocates to the cytosol. This relocalisation was prevented by prior treatment with PGI2 or the nitric oxide donor GSNO, or by inhibition of GSK3. Our results place CAP1 at a crossroad of signalling pathways that control platelet activation by contributing to actin remodelling at the cell cortex and actin nodules during platelet spreading.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 School of Life Science and Technology, Changchun University of Science and Technology, Changchun, Jilin, China; Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull, Hull, UK
2 Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, Faculty of Health Sciences, University of Hull, Hull, UK
3 Department of Biochemistry, University of Oxford, Oxford, UK