It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Cultured cell-derived extracellular matrices (ECM)-based biomaterials exploit the inherent capacity of cells to create highly sophisticated supramolecular assemblies. However, standard cell culture conditions are far from ideal given the fact that the diluted microenvironment does not favor the production of ECM components, a circumstance particularly relevant for collagen. An incomplete conversion of procollagen by C-proteinase/bone morphogenetic protein 1 (BMP1) has been proposed to severely limit in vitro collagen deposition. BMP1 also catalyzes the proteolytic activation of the precursor of the collagen cross-linking enzyme, lysyl oxidase (LOX) to yield the active form, suggesting a deficit in cross-linking activity under standard conditions. We hypothesized that the implementation of fibroblast cultures with LOX and BMP1 may be an effective way to increase collagen deposition. To test it, we have generated stable cell lines overexpressing LOX and BMP1 and studied the effect of supernatants enriched in LOX and BMP1 on collagen synthesis and deposition from fibroblasts. Herein, we demonstrate that the supplementation with LOX and BMP1 strongly increased the deposition of collagen onto the insoluble matrix at the expense of the soluble fraction in the extracellular medium. Using decellularization protocols, we also show that fibroblast-derived matrices regulate adipogenic and osteogenic differentiation of human mesenchymal stem cells (MSC), and this effect was modulated by LOX/BMP1. Collectively, these data demonstrate that we have developed a convenient protocol to enhance the capacity of in vitro cell cultures to deposit collagen in the ECM, representing this approach a promising technology for application in tissue engineering.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer