It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Staphylococcus aureus is a gram-positive bacterium that causes a wide range of infections. Recently, the spread of methicillin-resistant S. aureus (MRSA) strains has seriously reduced antibiotic treatment options. Anti-virulence strategies, the objective of which is to target the virulence instead of the viability of the pathogen, have become widely accepted as a means of avoiding the emergence of new antibiotic-resistant strains. To increase the number of anti-virulence therapeutic options, it is necessary to identify as many novel virulence-associated genes as possible in MRSA. Co-functional networks have proved useful for mapping gene-to-phenotype associations in various organisms. Herein, we present StaphNet (www.inetbio.org/staphnet), a genome-scale co-functional network for an MRSA strain, S. aureus subsp. USA300_FPR3757. StaphNet, which was constructed by the integration of seven distinct types of genomics data within a Bayesian statistics framework, covers approximately 94% of the coding genome with a high degree of accuracy. We implemented a companion web server for network-based gene prioritization of the phenotypes of 31 different S. aureus strains. We demonstrated that StaphNet can effectively identify genes for virulence-associated phenotypes in MRSA. These results suggest that StaphNet can facilitate target discovery for the development of anti-virulence drugs to treat MRSA infection.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea
2 Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea