Abstract

Staphylococcus aureus is a gram-positive bacterium that causes a wide range of infections. Recently, the spread of methicillin-resistant S. aureus (MRSA) strains has seriously reduced antibiotic treatment options. Anti-virulence strategies, the objective of which is to target the virulence instead of the viability of the pathogen, have become widely accepted as a means of avoiding the emergence of new antibiotic-resistant strains. To increase the number of anti-virulence therapeutic options, it is necessary to identify as many novel virulence-associated genes as possible in MRSA. Co-functional networks have proved useful for mapping gene-to-phenotype associations in various organisms. Herein, we present StaphNet (www.inetbio.org/staphnet), a genome-scale co-functional network for an MRSA strain, S. aureus subsp. USA300_FPR3757. StaphNet, which was constructed by the integration of seven distinct types of genomics data within a Bayesian statistics framework, covers approximately 94% of the coding genome with a high degree of accuracy. We implemented a companion web server for network-based gene prioritization of the phenotypes of 31 different S. aureus strains. We demonstrated that StaphNet can effectively identify genes for virulence-associated phenotypes in MRSA. These results suggest that StaphNet can facilitate target discovery for the development of anti-virulence drugs to treat MRSA infection.

Details

Title
Network-based genetic investigation of virulence-associated phenotypes in methicillin-resistant Staphylococcus aureus
Author
Chan Yeong Kim 1 ; Lee, Muyoung 1 ; Lee, Keehoon 2 ; Sang Sun Yoon 2 ; Lee, Insuk 1 

 Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, Korea 
 Department of Microbiology and Immunology, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea 
Pages
1-12
Publication year
2018
Publication date
Jul 2018
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2071159545
Copyright
© 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.