It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Cellular growth impacts a range of phenotypic responses. Identifying the sources of fluctuations in growth and how they propagate across the cellular machinery can unravel mechanisms that underpin cell decisions. We present a stochastic cell model linking gene expression, metabolism and replication to predict growth dynamics in single bacterial cells. In addition to several population-averaged data, the model quantitatively recovers how growth fluctuations in single cells change across nutrient conditions. We develop a framework to analyse stochastic chemical reactions coupled with cell divisions and use it to identify sources of growth heterogeneity. By visualising cross-correlations we then determine how such initial fluctuations propagate to growth rate and affect other cell processes. We further study antibiotic responses and find that complex drug-nutrient interactions can both enhance and suppress heterogeneity. Our results provide a predictive framework to integrate single-cell and bulk data and draw testable predictions with implications for antibiotic tolerance, evolutionary biology and synthetic biology.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer