It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Genome-wide and phenome-wide association studies are commonly used to identify important relationships between genetic variants and phenotypes. Most of these studies have treated diseases as independent variables and suffered from heavy multiple adjustment burdens due to the large number of genetic variants and disease phenotypes. In this study, we propose using topic modeling via non-negative matrix factorization (NMF) for identifying associations between disease phenotypes and genetic variants. Topic modeling is an unsupervised machine learning approach that can be used to learn the semantic patterns from electronic health record data. We chose rs10455872 in LPA as the predictor since it has been shown to be associated with increased risk of hyperlipidemia and cardiovascular diseases (CVD). Using data of 12,759 individuals from the biobank at Vanderbilt University Medical Center, we trained a topic model using NMF from 1,853 distinct phecodes extracted from the cohort's electronic health records and generated six topics. We quantified their associations with rs10455872 in LPA. Topics indicating CVD had positive correlations with rs10455872 (P < 0.001), replicating a previous finding. We also identified a negative correlation between LPA and a topic representing lung cancer (P < 0.001). Our results demonstrate the applicability of topic modeling in exploring the relationship between the genome and clinical diseases.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer