It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Given the recent controversies in some neuroimaging statistical methods, we compared the most frequently used functional Magnetic Resonance Imaging (fMRI) analysis packages: AFNI, FSL and SPM, with regard to temporal autocorrelation modeling. This process, sometimes known as pre-whitening, is conducted in virtually all task fMRI studies. We employed eleven datasets containing 980 scans corresponding to different fMRI protocols and subject populations. Though autocorrelation modeling in AFNI was not perfect, its performance was much higher than the performance of autocorrelation modeling in FSL and SPM. The residual autocorrelated noise in FSL and SPM led to heavily confounded first level results, particularly for low-frequency experimental designs. Also, we observed very severe problems for scans with short repetition times. The resulting false positives and false negatives can be expected to propagate to the group level, especially if the group analysis is performed with a mixed effects model. Our results show superior performance of SPM's alternative pre-whitening: FAST, over the default SPM's method. The reliability of task fMRI studies would increase with more accurate autocorrelation modeling. Furthermore, reliability could increase if the analysis packages provided diagnostic plots. This way the investigator would be aware of residual autocorrelated noise in the GLM residuals. We provide a MATLAB script for the fMRI researchers to check if their analyses might be affected by imperfect pre-whitening.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer