It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The explosive increase of biomedical literature has made information extraction an increasingly important tool for biomedical research. A fundamental task is the recognition of biomedical named entities in text (BNER) such as genes/proteins, diseases, and species. Recently, a domain-independent method based on deep learning and statistical word embeddings, called long short-term memory network-conditional random field (LSTM-CRF), has been shown to outperform state-of-the-art entity-specific BNER tools. However, this method is dependent on gold-standard corpora (GSCs) consisting of hand-labeled entities, which tend to be small but highly reliable. An alternative to GSCs are silver-standard corpora (SSCs), which are generated by harmonizing the annotations made by several automatic annotation systems. SSCs typically contain more noise than GSCs but have the advantage of containing many more training examples. Ideally, these corpora could be combined to achieve the benefits of both, which is an opportunity for transfer learning. In this work, we analyze to what extent transfer learning improves upon state-of-the-art results for BNER. We demonstrate that transferring a deep neural network (DNN) trained on a large, noisy SSC to a smaller, but more reliable GSC significantly improves upon state-of-the-art results for BNER. Compared to a state-of-the-art baseline evaluated on 23 GSCs covering four different entity classes, transfer learning results in an average reduction in error of approximately 11%. We found transfer learning to be especially beneficial for target data sets with a small number of labels (approximately 6000 or less).
Footnotes
* New manuscript version contains all changes made after peer-review and matches the to-be published copied manuscript. The largest changes include additional datasets added to the experiments and an appendix table detailing the performance results of the neural network on all datasets used in the study.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer