It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Biomolecular methods for species identification are increasingly being utilised in the study of changing environments, both at the microscopic and macroscopic levels. High-throughput peptide mass fingerprinting has been largely applied to bacterial identification, but increasingly used to identify archaeological and palaeontological skeletal material to yield information on past environments and human-animal interaction. However, as applications move away from predominantly domesticate and the more abundant wild fauna to a much wider range of less common taxa that do not yet have genetically-derived sequence information, robust methods of species identification and biomarker selection need to be determined.
Results
Here we developed a supervised machine learning algorithm for classifying the species of ancient remains based on collagen fingerprinting. The aim was to minimise requirements on prior knowledge of known species while yielding satisfactory sensitivity and specificity. The algorithm uses iterations of a modified random forest classifier with a similarity scoring system to expand its identified samples. We tested it on a set of 6805 spectra and found that a high level of accuracy can be achieved with a training set of five identified specimens per taxon.
Conclusions
This method consistently achieves higher accuracy than two-dimensional principal component analysis and similar accuracy with hierarchical clustering using optimised parameters, which greatly reduces requirements for human input. Within the vertebrata, we demonstrate that this method was able to achieve the taxonomic resolution of family or sub-family level whereas the genus- or species-level identification may require manual interpretation or further experiments. In addition, it also identifies additional species biomarkers than those previously published.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer