Full text

Turn on search term navigation

© 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Size-resolved measurements of atmospheric aerosol and cloud condensation nuclei (CCN) concentrations and hygroscopicity were conducted over a full seasonal cycle at the remote Amazon Tall Tower Observatory (ATTO, March 2014–February 2015). In a preceding companion paper, we presented annually and seasonally averaged data and parametrizations (Part 1; Pöhlker et al., 2016a). In the present study (Part 2), we analyze key features and implications of aerosol and CCN properties for the following characteristic atmospheric conditions:

  • Empirically pristine rain forest (PR) conditions, where no influence of pollution was detectable, as observed during parts of the wet season from March to May. The PR episodes are characterized by a bimodal aerosol size distribution (strong Aitken mode with DAit 70 nm andNAit 160 cm-3, weak accumulation mode withDacc 160 nm and Nacc 90 cm-3), a chemical composition dominated by organic compounds, and relatively low particle hygroscopicity (κAit 0.12, κacc 0.18).

  • Long-range-transport (LRT) events, which frequently bring Saharan dust, African biomass smoke, and sea spray aerosols into the Amazon Basin, mostly during February to April. The LRT episodes are characterized by a dominant accumulation mode (DAit 80 nm, NAit 120 cm-3 vs. Dacc 180 nm,Nacc 310 cm-3), an increased abundance of dust and salt, and relatively high hygroscopicity (κAit 0.18,κacc 0.35). The coarse mode is also significantly enhanced during these events.

  • Biomass burning (BB) conditions characteristic for the Amazonian dry season from August to November. The BB episodes show a very strong accumulation mode (DAit 70 nm, NAit 140 cm-3 vs.Dacc 170 nm, Nacc 3400 cm-3), very high organic mass fractions ( 90 %), and correspondingly low hygroscopicity (κAit 0.14,κacc 0.17).

  • Mixed-pollution (MPOL) conditions with a superposition of African and Amazonian aerosol emissions during the dry season. During the MPOL episode presented here as a case study, we observed African aerosols with a broad monomodal distribution (D 130 nm, NCN,10 1300 cm-3), with high sulfate mass fractions ( 20 %) from volcanic sources and correspondingly high hygroscopicity (κ<100nm 0.14, κ>100nm 0.22), which were periodically mixed with fresh smoke from nearby fires (D 110 nm,NCN,10 2800 cm-3) with an organic-dominated composition and sharply decreased hygroscopicity (κ<150nm 0.10,κ>150nm 0.20).

Insights into the aerosol mixing state are provided by particle hygroscopicity (κ) distribution plots, which indicate largely internal mixing for the PR aerosols (narrow κ distribution) and more external mixing for the BB, LRT, and MPOL aerosols (broad κ distributions).

The CCN spectra (CCN concentration plotted against water vapor supersaturation) obtained for the different case studies indicate distinctly different regimes of cloud formation and microphysics depending on aerosol properties and meteorological conditions. The measurement results suggest that CCN activation and droplet formation in convective clouds are mostly aerosol-limited under PR and LRT conditions and updraft-limited under BB and MPOL conditions. Normalized CCN efficiency spectra (CCN divided by aerosol number concentration plotted against water vapor supersaturation) and corresponding parameterizations (Gaussian error function fits) provide a basis for further analysis and model studies of aerosol–cloud interactions in the Amazon.

Details

Title
Long-term observations of cloud condensation nuclei over the Amazon rain forest – Part 2: Variability and characteristics of biomass burning, long-range transport, and pristine rain forest aerosols
Author
Pöhlker, Mira L 1 ; Ditas, Florian 1   VIAFID ORCID Logo  ; Saturno, Jorge 2   VIAFID ORCID Logo  ; Klimach, Thomas 1 ; Isabella Hrabě de Angelis 1   VIAFID ORCID Logo  ; Araùjo, Alessandro C 3 ; Brito, Joel 4   VIAFID ORCID Logo  ; Carbone, Samara 5 ; Cheng, Yafang 1   VIAFID ORCID Logo  ; Chi, Xuguang 6 ; Ditz, Reiner 1 ; Gunthe, Sachin S 7 ; Holanda, Bruna A 1 ; Kandler, Konrad 8 ; Kesselmeier, Jürgen 1   VIAFID ORCID Logo  ; Könemann, Tobias 1   VIAFID ORCID Logo  ; Krüger, Ovid O 1 ; Lavrič, Jošt V 9   VIAFID ORCID Logo  ; Martin, Scot T 10 ; Mikhailov, Eugene 11   VIAFID ORCID Logo  ; Moran-Zuloaga, Daniel 1 ; Rizzo, Luciana V 12 ; Rose, Diana 13 ; Su, Hang 1   VIAFID ORCID Logo  ; Thalman, Ryan 14 ; Walter, David 1   VIAFID ORCID Logo  ; Wang, Jian 15   VIAFID ORCID Logo  ; Wolff, Stefan 1 ; Barbosa, Henrique M J 16 ; Artaxo, Paulo 3   VIAFID ORCID Logo  ; Andreae, Meinrat O 17   VIAFID ORCID Logo  ; Pöschl, Ulrich 1   VIAFID ORCID Logo  ; Pöhlker, Christopher 1   VIAFID ORCID Logo 

 Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, 55020 Mainz, Germany 
 Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, 55020 Mainz, Germany; now at: Physikalisch-Technische Bundesanstalt, Bundesallee 100, 38116 Braunschweig, Germany 
 Empresa Brasileira de Pesquisa Agropecuária (EMBRAPA), Trav. Dr. Enéas Pinheiro, Belém, PA, 66095-100, Brazil 
 Institute of Physics, University of São Paulo, São Paulo 05508-900, Brazil; now at: Laboratoire de Météorologie Physique, Université Clermont Auvergne, Aubière, France 
 Institute of Physics, University of São Paulo, São Paulo 05508-900, Brazil; now at: Institute of Agrarian Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil 
 Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, 55020 Mainz, Germany; now at: Institute for Climate and Global Change Research & School of Atmospheric Sciences, Nanjing University, Nanjing, 210093, China 
 EWRE Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai 600036, India 
 Institut für Angewandte Geowissenschaften, Technische Universität Darmstadt, Darmstadt, Germany 
 Department of Biogeochemical Systems, Max Planck Institute for Biogeochemistry, 07701 Jena, Germany 
10  John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA; Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA 
11  St. Petersburg State University, 7/9 Universitetskaya nab, St. Petersburg, 199034, Russia 
12  Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo (UNIFESP), Diadema, SP, Brazil 
13  Institut für Atmosphäre und Umwelt, Goethe Universität, 60438 Frankfurt, Germany; now at: Hessian Agency for Nature Conservation, Environment and Geology, Rheingaustr. 186, 65203 Wiesbaden, Germany 
14  Biological, Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA; now at: Department of Chemistry, Snow College, Richfield, UT, USA 
15  Biological, Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA 
16  Institute of Physics, University of São Paulo, São Paulo 05508-900, Brazil 
17  Multiphase Chemistry and Biogeochemistry Departments, Max Planck Institute for Chemistry, 55020 Mainz, Germany; Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037, USA 
Pages
10289-10331
Publication year
2018
Publication date
2018
Publisher
Copernicus GmbH
ISSN
16807316
e-ISSN
16807324
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2071467669
Copyright
© 2018. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.