Full text

Turn on search term navigation

Copyright © 2018, Axt et al.; licensee Beilstein-Institut. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this study we investigate the influence of the operation method in Kelvin probe force microscopy (KPFM) on the measured potential distribution. KPFM is widely used to map the nanoscale potential distribution in operating devices, e.g., in thin film transistors or on cross sections of functional solar cells. Quantitative surface potential measurements are crucial for understanding the operation principles of functional nanostructures in these electronic devices. Nevertheless, KPFM is prone to certain imaging artifacts, such as crosstalk from topography or stray electric fields. Here, we compare different amplitude modulation (AM) and frequency modulation (FM) KPFM methods on a reference structure consisting of an interdigitated electrode array. This structure mimics the sample geometry in device measurements, e.g., on thin film transistors or on solar cell cross sections. In particular, we investigate how quantitative different KPFM methods can measure a predefined externally applied voltage difference between the electrodes. We found that generally, FM-KPFM methods provide more quantitative results that are less affected by the presence of stray electric fields compared to AM-KPFM methods.

Details

Title
Know your full potential: Quantitative Kelvin probe force microscopy on nanoscale electrical devices
Author
Axt Amelie; Hermes, Ilka M; Bergmann, Victor W; Tausendpfund Niklas; Weber Stefan A L
University/institution
U.S. National Institutes of Health/National Library of Medicine
Pages
1809-1819
Publication year
2018
Publication date
2018
Publisher
Beilstein-Institut zur Föerderung der Chemischen Wissenschaften
e-ISSN
21904286
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2080439139
Copyright
Copyright © 2018, Axt et al.; licensee Beilstein-Institut. This work is published under http://creativecommons.org/licenses/by/4.0 (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.