It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Our objective was to identify precise mechanical metrics of the proximal tibia which differentiated OA and normal knees. We developed subject-specific FE models for 14 participants (7 OA, 7 normal) who were imaged three times each for assessing precision (repeatability). We assessed various mechanical metrics (minimum principal and von Mises stress and strain as well as structural stiffness) across the proximal tibia for each subject. In vivo precision of these mechanical metrics was assessed using CV%RMS. We performed parametric and non-parametric statistical analyses and determined Cohen’s d effect sizes to explore differences between OA and normal knees. For all FE-based mechanical metrics, average CV%RMS was less than 6%. Minimum principal stress was, on average, 75% higher in OA versus normal knees while minimum principal strain values did not differ. No difference was observed in structural stiffness. FE modeling could precisely quantify and differentiate mechanical metrics variations in normal and OA knees, in vivo. This study suggests that bone stress patterns may be important for understanding OA pathogenesis at the knee.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
2 College of Kinesiology, University of Saskatchewan, Saskatoon, SK, Canada
3 Division of Research, New England Baptist Hospital, Boston, MA, USA
4 Institute of Bone and Joint Research, Kolling Institute, University of Sydney and Rheumatology Department, Royal North Shore Hospital, Sydney, NSW, Australia
5 Department of Orthopaedics and Centre for Hip Health and Mobility, University of British Columbia and Vancouver Coastal Health Research Institute, Vancouver, BC, Canada