Full text

Turn on search term navigation

© 2018 O’Rourke et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The production of envelope glycoproteins (Envs) for use as HIV vaccines is challenging. The yield of Envs expressed in stable Chinese Hamster Ovary (CHO) cell lines is typically 10–100 fold lower than other glycoproteins of pharmaceutical interest. Moreover, Envs produced in CHO cells are typically enriched for sialic acid containing glycans compared to virus associated Envs that possess mainly high-mannose carbohydrates. This difference alters the net charge and biophysical properties of Envs and impacts their antigenic structure. Here we employ a novel robotic cell line selection strategy to address the problems of low expression. Additionally, we employed a novel gene-edited CHO cell line (MGAT1- CHO) to address the problems of high sialic acid content, and poor antigenic structure. We demonstrate that stable cell lines expressing high levels of gp120, potentially suitable for biopharmaceutical production can be created using the MGAT1- CHO cell line. Finally, we describe a MGAT1- CHO cell line expressing A244-rgp120 that exhibits improved binding of three major families of bN-mAbs compared to Envs produced in normal CHO cells. The new strategy described has the potential to eliminate the bottleneck in HIV vaccine development that has limited the field for more than 25 years.

Details

Title
Robotic selection for the rapid development of stable CHO cell lines for HIV vaccine production
Author
Sara M O’Rourke; ⨯ Gabriel Byrne; ⨯ Gwen Tatsuno; Wright, Meredith; Yu, Bin; ⨯ Kathryn A Mesa; Doran, Rachel C; Alexander, David; Berman, Phillip W
First page
e0197656
Section
Research Article
Publication year
2018
Publication date
Aug 2018
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2082108776
Copyright
© 2018 O’Rourke et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.