It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The physiological function of the pancreas is controlled by the circadian clock. The aim of this study was to determine whether aging-induced changes in glucose homeostasis affect properties of the circadian clock in the pancreas and/or its sensitivity to disturbances in environmental lighting conditions. mPer2Luc mice aged 24–26 months developed hyperinsulinemic hypoglycaemia, which was likely due to the Pclo-mediated insulin hyper-secretion and Slc2a2-mediated glucose transport impairment in the pancreas, and due to the alterations in Pp1r3c-related glycogen storage and Sgk1-related glucose transport in the liver. In the pancreatic tissue, aging affected clock gene expression only marginally, it upregulated Bmal1 and downregulated Clock expression. Whereas aging significantly impaired the circadian clock in lung explants, which were used as a control tissue, the properties of the pancreatic clock in vitro were not affected. The data suggest a non-circadian role of Bmal1 in changes of pancreatic function that occur during aging. Additionally, the pancreatic clock was more sensitive to exposure of animals to constant light conditions. These findings provide an explanation for the previously demonstrated relationship between disturbances in the circadian system and disordered glucose homeostasis, including diabetes mellitus type 2, in subjects exposed to long-term shift work.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details

1 Department of Neurohumoral Regulations, Institute of Physiology, the Czech Academy of Sciences, Prague, Czech Republic; Faculty of Sciences, Charles University, Prague, Czech Republic
2 Department of Neurohumoral Regulations, Institute of Physiology, the Czech Academy of Sciences, Prague, Czech Republic