It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Frogs such as Rana temporaria and Litoria aurea secrete numerous closely related antimicrobial peptides (AMPs) as an effective chemical dermal defence. Despite the high similarity in physical properties and preference for adopting secondary amphipathic, ��-helix conformations in membrane mimicking milieu, their spectrum of activity and potency often varies considerably. Damage or penetration of the bacterial plasma membrane is considered essential for AMP activity and hence distinguishing apparently similar AMPs according to their behaviour in, and effects on, model membranes will inform understanding of species specific effective antimicrobial mechanisms. Here we use a combination of molecular dynamics simulations, circular dichroism and patch-clamp to investigate the basis for differing anti-bacterial activities in representative AMPs from each species; temporin L and aurein 2.5. Despite adopting near identical, ��-helix conformations in the steady-state in a variety of membrane models, these two AMPs can be distinguished both in vitro and in silico based on their dynamic interactions with model membranes; the greater conformational flexibility and the higher amplitude channel conductance induced offers a rationale for the greater potency and broader spectrum of activity of temporin L over aurein 2.5. Specific contributions from individual residues are identified that define the mechanisms of action of each AMP. Our findings suggest AMPs in frogs are examples of parallel evolution whose utility is based on apparently similar but subtly distinct mechanisms of action.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





