Full text

Turn on search term navigation

Copyright © 2018 Wei Liu and Hui Wang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Visual tracking is a challenging research topic in the field of computer vision with many potential applications. A large number of tracking methods have been proposed and achieved designed tracking performance. However, the current state-of-the-art tracking methods still can not meet the requirements of real-world applications. One of the main challenges is to design a good appearance model to describe the target’s appearance. In this paper, we propose a novel visual tracking method, which uses compressed features to model target’s appearances and then uses SVM to distinguish the target from its background. The compressed features were obtained by the zero-tree coding on multiscale wavelet coefficients extracted from an image, which have both the low dimensionality and discriminate ability and therefore ensure to achieve better tracking results. The experimental comparisons with several state-of-the-art methods demonstrate the superiority of the proposed method.

Details

Title
Visual Tracking Based on Discriminative Compressed Features
Author
Liu, Wei 1   VIAFID ORCID Logo  ; Wang, Hui 2 

 Department of Modern Education Technology, Ludong University, Yantai, China 
 Lab, CNCERT/CC, Yumin Road No. 3A, Beijing 100029, China 
Editor
Lei Zhang
Publication year
2018
Publication date
2018
Publisher
John Wiley & Sons, Inc.
ISSN
16875680
e-ISSN
16875699
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2087506285
Copyright
Copyright © 2018 Wei Liu and Hui Wang. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/