Abstract

Energy conversion of light into mechanical work is of fundamental interest in applications. In particular, diligent molecular design on nanoscale, in order to achieve efficient photomechanical effects on macroscopic scale, has become one of the most interesting study topics. Here, by incorporating a “photomelting” azobenzene monomer crosslinked into liquid crystalline (LC) networks, we generate photoresponsive polymer films that exhibit reversible photoswitchable glass transition temperatures (Tg) at room temperature (~20 °C) and photomechanical actuations under the stimulus of UV/visible light. The trans-to-cis isomerization of azo chromophores results in a change in Tg of the crosslinked LC polymers. The Tg of the polymer network is higher than room temperature in the trans-form and lower than room temperature in the cis-form. We demonstrate the photoswitchable Tg contribute to the photomechanical bending and a new mechanism for photomechanical bending that attributes the process to an inhomogeneous change in Tg of the film is proposed.

Details

Title
Light-induced mechanical response in crosslinked liquid-crystalline polymers with photoswitchable glass transition temperatures
Author
Yue, Youfeng 1 ; Norikane, Yasuo 1   VIAFID ORCID Logo  ; Azumi, Reiko 1 ; Koyama, Emiko 1 

 Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan 
Pages
1-8
Publication year
2018
Publication date
Aug 2018
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2088040733
Copyright
© 2018. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.